Respuesta :

Answer:

1) [tex]L(y)=\frac{2}{s^{3}}[/tex]

2) [tex]L(y)=\frac{6}{s^{4}}[/tex]

Step-by-step explanation:

To find : Calculate the Laplace transforms of the following from the definition ?

Solution :

We know that,

Laplace transforms of [tex]t^n[/tex] is given by,

[tex]L(t^n)=\frac{n!}{s^{n+1}}[/tex]

1) [tex]y=t^2[/tex]

Laplace of y,

[tex]L(y)=L(t^2)[/tex] here n=2

[tex]L(y)=\frac{2!}{s^{2+1}}[/tex]

[tex]L(y)=\frac{2}{s^{3}}[/tex]

2) [tex]y=t^3[/tex]

Laplace of y,

[tex]L(y)=L(t^3)[/tex] here n=3

[tex]L(y)=\frac{3!}{s^{3+1}}[/tex]

[tex]L(y)=\frac{3\times 2}{s^{4}}[/tex]

[tex]L(y)=\frac{6}{s^{4}}[/tex]