Answer:
Cut off ratio=2.38
Explanation:
Given that
[tex]T_1=300K[/tex]
[tex]P_1=100KPa[/tex]
[tex]P_2=P_3=7200KPa[/tex]
[tex]T_3=2250K[/tex]
Lets take [tex]T_1[/tex] is the temperature at the end of compression process
For air γ=1.4
[tex]\dfrac{T_2}{T_1}=\left(\dfrac{P_2}{P_1}\right)^{\dfrac{\gamma -1}{\gamma}}[/tex]
[tex]\dfrac{T_2}{300}=\left(\dfrac{7200}{100}\right)^{\dfrac{1.4-1}{1.4}}[/tex]
[tex]T_2=1070K[/tex]
At constant pressure
[tex]\dfrac{T_3}{T_2}=\dfrac{V_3}{V_2}[/tex]
[tex]\dfrac{2550}{1070}=\dfrac{V_3}{V_2}[/tex]
[tex]\dfrac{V_3}{V_2}=2.83[/tex]
So cut off ratio
[tex]cut\ off\ ratio =\dfrac{V_3}{V_2}[/tex]
Cut off ratio=2.38