Answer: [tex]224.9\ m^2[/tex]
Step-by-step explanation:
An isosceles right triangle is a right triangle having two legs (other than hypotenuse ) of same length .
Given : The length of the hypotenuse of an isosceles right triangle is 30 meters.
Let x be the side length of the other two legs, then by using the Pythagoras theorem for right triangle , we have
[tex](30)^2=x^2+x^2\\\\\Rightarrow\ 900=2x^2\\\\\Rightarrow\ x^2=\dfrac{900}{2}\\\\\Rightarrow\ x^2=450\\\\\Rightarrow\ x=\sqrt{450}=\sqrt{9\times25\times2}=\sqrt{3^2\times5^2\times2}\\\Rightarrow\ x=3\times5\sqrt{2}=15(1.414)=21.21[/tex]
Thus, the other two legs have side length of 21.21 m each.
Now, the area of a right triangle is given by :-
[tex]A=\dfrac{1}{2}\times base\times height\\\\\Rightarrow\ A=\dfrac{1}{2}(21.21)\times(21.21)=224.93205\approx224.9\ m^2[/tex]
Hence, the area of the given isosceles right triangle= [tex]224.9\ m^2[/tex]