A pipe of diameter 10 cm carries water at a velocity of 5 m/s. Determine the volumetric flow rate in m'/min (2 pts) a. b. the mass flow rate in kg/min (use the density of water on Thatcher's sheet)

Respuesta :

Explanation:

It is given that diameter of the pipe is 10 cm which is also equal to [tex]10 \times 10^{-2}m[/tex].

Velocity of water = 5 m/s

(a)   Formula to calculate volumetric flow rate is as follows.

                       Q = Area of the pipe (A) × Velocity of water (V)

                           = [tex]\frac{\pi}{4} \times 10 \times 10^{-2} \times 5 m^{3}/sec[/tex]

                           = 0.039 [/tex]m^{3}/sec[/tex]

                           = [tex]\frac{0.039 m^{3}/sec \times 60 sec}{1 min}[/tex]

                           = 2.36 [tex]m^{3} min^{-1}[/tex]

Hence, the volumetric flow rate is 2.36 [tex]m^{3} min^{-1}[/tex].

(b)    Formula to calculate mass flow rate is as follows.

                      [tex]Q \times \rho[/tex]

                     = [tex]2.36 m^{3} min^{-1} \times 1000 kg m^{-3}[/tex]

                     = 2356.19 kg/min

Therefore, the mass flow rate is 2356.19 kg/min.