contestada

What are the units of (D) when... m is the mass, t is time, d is the diameter, D is the diffusion coefficient, M is the molar mass, R is the universal gas constant, T is the temperature, and P is the partial pressure.... (dm/dt) = (-2pi)*(d)*(D)*(M/(RT))*P

Respuesta :

Answer : The unit of (D) in metric system is [tex]m^2/s[/tex]

Explanation :

The given expression is:

[tex](dm/dt)=(-2\pi)\times (d)\times (D)\times (\frac{M}{RT})\times P[/tex]

where,

m = mass

t = time

d = diameter

D = diffusion coefficient

M = molar mass

R = universal gas constant

T = temperature

P = partial pressure

In metric system,

The unit of mass is, kg

The unit of time is, s

The unit of diameter is, m

The unit of molar mass is, kg/mol

The unit of universal gas constant is, [tex]Nm/^oC.mol[/tex]

The unit of temperature is, [tex]^oC[/tex]

The unit of partial pressure is, [tex]N/m^2[/tex]

The unit of diffusion coefficient will be:

[tex]D=\frac{(dm/dt)}{(-2\pi)\times (d)\times (\frac{M}{RT})\times P}[/tex]

or,

[tex]D=\frac{(dm)\times (R)\times (T)}{2\pi \times (d)\times (dt)\times (M)\times (P)}[/tex]

[tex]D=\frac{(dm)\times (R)\times (T)}{(d)\times (dt)\times (M)\times (P)}[/tex]

Now put all the unit in this expression, we get:

[tex]D=\frac{(kg)\times (Nm/^oC.mol)\times (^oC)}{(m)\times (s)\times (kg/mol)\times (N/m^2)}[/tex]

[tex]D=m^2/s[/tex]

Therefore, the unit of (D) in metric system is [tex]m^2/s[/tex]