Respuesta :
Answer:
In the steel: 815 kPa
In the aluminum: 270 kPa
Explanation:
The steel pipe will have a section of:
A1 = π/4 * (D^2 - d^2)
A1 = π/4 * (0.8^2 - 0.7^2) = 0.1178 m^2
The aluminum core:
A2 = π/4 * d^2
A2 = π/4 * 0.7^2 = 0.3848 m^2
The parts will have a certain stiffness:
k = E * A/l
We don't know their length, so we can consider this as stiffness per unit of length
k = E * A
For the steel pipe:
E = 210 GPa (for steel)
k1 = 210*10^9 * 0.1178 = 2.47*10^10 N
For the aluminum:
E = 70 GPa
k2 = 70*10^9 * 0.3848 = 2.69*10^10 N
Hooke's law:
Δd = f / k
Since we are using stiffness per unit of length we use stretching per unit of length:
ε = f / k
When the force is distributed between both materials will stretch the same length:
f = f1 + f2
f1 / k1 = f2/ k2
Replacing:
f1 = f - f2
(f - f2) / k1 = f2 / k2
f/k1 - f2/k1 = f2/k2
f/k1 = f2 * (1/k2 + 1/k1)
f2 = (f/k1) / (1/k2 + 1/k1)
f2 = (200000/2.47*10^10) / (1/2.69*10^10 + 1/2.47*10^10) = 104000 N = 104 KN
f1 = 200 - 104 = 96 kN
Then we calculate the stresses:
σ1 = f1/A1 = 96000 / 0.1178 = 815000 Pa = 815 kPa
σ2 = f2/A2 = 104000 / 0.3848 = 270000 Pa = 270 kPa
The answer is: within the steel: 815 kPa
When within the aluminum: 270 kPa
The aluminum
When The steel pipe will have a piece of:Then A1 = π/4 * (D^2 - d^2)After that A1 = π/4 * (0.8^2 - 0.7^2) = 0.1178 m^2
The aluminum core is: Now A2 = π/4 * d^2Then A2 = π/4 * 0.7^2 = 0.3848 m^2
After that The parts will have a particular stiffness:k = E * A/l
We don't know their length, so we are able to consider this as stiffness per unit of length k = E * A
For the steel pipe: E = 210 GPa (for steel) k1 = 210*10^9 * 0.1178 = 2.47*10^10 N
For the aluminum: E = 70 GPak2 = 70*10^9 * 0.3848 = 2.69*10^10 NHooke's law:Δd = f / k
Since we are using stiffness per unit of length we use stretching per unit of length:ε = f / k
When the force is distributed between both materials will stretch the identical length:f = f1 + f2f1 / k1 = f2/ k2
Replacing: f1 = f - f2(f - f2) / k1 = f2 / k2f/k1 - f2/k1 = f2/k2f/k1 = f2 * (1/k2 + 1/k1)f2 = (f/k1) / (1/k2 + 1/k1)f2 = (200000/2.47*10^10) / (1/2.69*10^10 + 1/2.47*10^10) = 104000 N = 104 KNf1 = 200 - 104 = 96 kN
Then we calculate the stresses:σ1 = f1/A1 = 96000 / 0.1178 = 815000 Pa = 815 kPaσ2 = f2/A2 = 104000 / 0.3848 = 270000 Pa = 270 kPa
Find out more information about Aluminum here:
brainly.com/question/4229590