Respuesta :

Answer:

[tex](-\frac{85}{28},2)[/tex]

Step-by-step explanation:

We are asked to find the focus of the parabola that has a vertex [tex](-3,2)[/tex] opens horizontally and passes through the point [tex](-10,1)[/tex].

We know that equation of a horizontal parabola is [tex](y-k)^2=4p(x-h)[/tex], where p is not equal to zero.

[tex](h,k)[/tex] = Vertex of parabola.

Focus: [tex](h+p,k)[/tex]

Upon substituting the coordinates of vertex and given point in equation of parabola, we will get:

[tex](1-2)^2=4p(-10-(-3))[/tex]

[tex](-1)^2=4p(-10+3)[/tex]

[tex]1=4p(-7)[/tex]

[tex]1=-28p[/tex]

[tex]\frac{1}{-28}=\frac{-28p}{-28}[/tex]

[tex]-\frac{1}{28}=p[/tex]

Focus: [tex](h+p,k)[/tex]

[tex](-3+(-\frac{1}{28}),2)[/tex]

[tex](-3-\frac{1}{28},2)[/tex]

[tex](\frac{-3*28}{28}-\frac{1}{28},2)[/tex]

[tex](\frac{-84}{28}-\frac{1}{28},2)[/tex]

[tex](\frac{-84-1}{28},2)[/tex]

[tex](\frac{-85}{28},2)[/tex]

[tex](-\frac{85}{28},2)[/tex]

Therefore, the focus of the parabola is at point [tex](-\frac{85}{28},2)[/tex].