a cell phone tower that is 150 ft tall sits on a mountain that
is 1200 ft above sea level. what is the angle of depression from
the top of the tower to a cell user 5 miles away and 400 ft above
sea level?

Respuesta :

Answer:

angle of elevation will be [tex]2.14^o.[/tex]

Step-by-step explanation:

Given,

height of tower = 150 ft

height of tower = 1200 ft

So, total height of peak of tower = 1200 + 150

                                                       = 1350 ft

distance of user from cell tower = 5 miles

                                                     = 5 x 5280 feet

                                                     = 26,400 feet

Since the height of user from sea level = 400 ft

so, height of peak of tower with respect to user = 1350 - 400 ft

                                                                                = 950 ft

If the angle of depression is assumed as [tex]\theta[/tex], then we can write

[tex]tan\theta\ =\ \dfrac{\textrm{height of peak of tower w.r.t user}}{\textrm{distance of user from tower}}[/tex]

[tex]=>\ tan\theta\ =\ \dfrac{950}{26400}[/tex]

[tex]=>\ tan\theta\ =\ 0.374[/tex]

 [tex]=>\ \theta\ =\ 2.14^o[/tex]

So, the angle of elevation will be [tex]2.14^o.[/tex]