Consider the low-speed flight of the Space Shuttle as it is nearing a landing. If the air pressure and temperature at the nose of the shuttle are 1.2 atm and 300 K, respectively, what are the density and specific volume?

Respuesta :

Answer:

Density, [tex]\rho = 1.3937 kg/m^{3}[/tex]

Specific volume, [tex]V_{s} = 0.717 m^{3}/kg[/tex]

Given:

Air Pressure, [tex]P_{a} = 1.2 atm[/tex]

Temperature, T = 300 K

Solution:

Now, from the eqn:

[tex]P_{a}V = mRT[/tex]

[tex]P_{a} = \frac{m}{V}RT = \rho RT[/tex]

where

[tex]\rho = density[/tex]

[tex]\rho = \frac{1.2\times 10^{5}}{0.287\times 300} = 1.3937 kg/m^{3}[/tex]

Now, for specific volume:

[tex]V_{s} = \frac{1}{density, \rho}[/tex]

[tex]V_{s} = \frac{1}{1.3937} = 0.717 m^{3}/kg[/tex]