5. What is the area of the figure to the nearest square centimeter? It is composed of a symmetric hexagonand a semicircle 4 cm6 cm3 cm4 cmc 100 cmA 50 cm2D 129 cmB 86 cm

5 What is the area of the figure to the nearest square centimeter It is composed of a symmetric hexagonand a semicircle 4 cm6 cm3 cm4 cmc 100 cmA 50 cm2D 129 cm class=

Respuesta :

=100.2743338823 which is 100

Area of the given figure is equal to [tex]86\ cm^{2}[/tex] ( nearest square centimeter).  

What is area?

" Area is defined as the total space occupied by any two-dimensional object enclosed in it."

Formula used

Area of rectangle =  length × width

Area of triangle [tex]= \frac{1}{2} \times base \times height[/tex]

Area of semi-circle [tex]= \frac{1}{2} \times (\pi r^{2} )[/tex]

[tex]r=[/tex] radius of the circle

According to the question,

Given figure is composed of :

two congruent rectangles, four congruent triangles, one semi-circle

Given dimensions,

Length of a rectangle [tex]= 6cm[/tex]

Width of a rectangle [tex]= 4cm[/tex]

Height of a triangle [tex]= 4cm[/tex]

Base of a triangle [tex]= 3cm[/tex]

Radius of the semicircle [tex]= \frac{6}{2}[/tex]

                                         [tex]=3cm[/tex]

Substitute the value in the formula to get the required area,

Area of a rectangle [tex]= 6 \times 4[/tex]

                                [tex]= 24 cm^{2}[/tex]

Area of a triangle [tex]= \frac{1}{2} \times 3\times 4[/tex]

                              [tex]= 6 cm^{2}[/tex]

Area of a semicircle [tex]= \frac{1}{2} \times \pi \times 3^{2}[/tex]

                                  [tex]=4.5 \times 3.14\\\\= 14.13 cm^{2}[/tex]

Substitute the value to get the required area,

Area of the given composed figure [tex]= 2\times 24 + 4\times 6 + 14.13[/tex]

                                                           [tex]= 48 + 24 + 14.13\\\\= 86.13 \ cm^{2}[/tex]

                                                           ≈ [tex]86 cm^{2}[/tex] (nearest square centimeter)

Hence, Option(B) is the correct answer.

Learn more about area here

https://brainly.com/question/16151549

#SPJ2