Respuesta :

from sin(a-b) = sin(a)cos(b) - cos(a)sin(b)
let a=9x, b=x
sin(9x)cos(x) - cos(9x)sin(x) = sin(9x-x) = sin(8x)

Answer:

[tex]\sin (9x)\cos (x) - \cos 9(x) \sin (x)=\sin (8x)[/tex]      

Step-by-step explanation:

Given : Expression [tex]\sin (9x)\cos (x) - \cos 9(x) \sin (x)[/tex]

To find : Write the expression as the sine, cosine, or tangent of an angle?

Solution :

We know the trigonometry property of additional,

[tex]\sin A\cos B-\cos A\sin B=\sin (A-B)[/tex]

On comparing the expression with property,

A=9x and B=x

Substitute in formula,

[tex]\sin (9x)\cos (x) - \cos 9(x) \sin (x)=\sin (9x-x)[/tex]

[tex]\sin (9x)\cos (x) - \cos 9(x) \sin (x)=\sin (8x)[/tex]

Therefore, The expression is written as the sine of an angle

[tex]\sin (9x)\cos (x) - \cos 9(x) \sin (x)=\sin (8x)[/tex]