The equation to find the volume of a pyramid is V=[tex] \frac{lwh}{3} [/tex]
3.) V= [tex] \frac{3*4 \frac{2}{3} *3 \frac{1}{3} }{3} [/tex] → Multiply the top V=[tex] \frac{46 \frac{2}{3} }{3} [/tex] → Divide by 3 V=[tex]15 \frac{5}{9} [/tex]
4.) V=[tex] \frac{2.6*6.4*10.8}{3} [/tex] → Multiply the top V=[tex] \frac{179.712}{3} [/tex] → Divide by 3 V=59.904 or V=59.9
5.) Since you need to find h you put the V value in and keep the h value blank. 1,350=[tex] \frac{15*15*h}{3} [/tex] → 1,350=[tex] \frac{225*h}{3} [/tex] → Multiply 3 by both sides 3×1,350=[tex] \frac{225*h}{3} [/tex]×3 → 4,050=225×h → Divide 225 from both sides 4,050÷225=225×h÷225 → 18=h
I hope that helps!