contestada

A soft drink machine outputs a mean of 27 ounces per cup. The machine's output is normally distributed with a standard deviation of 3 ounces. What is the probability of filling a cup between 21 and 28 ounces? Round your answer to four decimal places.

Respuesta :

Answer:  0.6065

Step-by-step explanation:

Given : The machine's output is normally distributed with

[tex]\mu=27\text{ ounces per cup}[/tex]

[tex]\sigma=3\text{ ounces per cup}[/tex]

Let x be the random variable that represents the output of machine .

z-score : [tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= 21 ounces

[tex]z=\dfrac{21-27}{3}\approx-2[/tex]

For x= 28 ounces

[tex]z=\dfrac{28-27}{3}\approx0.33[/tex]

Using the standard normal distribution table , we have

The p-value : [tex]P(21<x<28)=P(-2<z<0.33)[/tex]

[tex]P(z<0.33)-P(z<-2)=0.6293-0.0227501=0.6065499\approx0.6065[/tex]

Hence, the probability of filling a cup between 21 and 28 ounces=  0.6065