Answer:
Explanation:
We will work the rate variance to obtain the standard rate:
[tex](standard\:rate-actual\:rate) \times actual \: hours DL \: rate \: variance[/tex]
actual rate $29.20
actual hours 11,700
difference $1.44
rate variance $16,800.00
[tex](standard\:rate-29.2) \times 11,700 = 16,700[/tex]
[tex](standard\:rate= 16,700 \div 11,700 +29.2[/tex]
std rate $30.64
Now we can solve for the labor efficiency variance:
[tex](standard\:hours-actual\:hours) \times standard \: rate = DL \: efficiency \: variance[/tex]
std hours 11700
actual hours 11500
std rate $30.64
difference 200
efficiency variance $6,128.00
The diference is positive, sothe variance is favorable.