Respuesta :

Answer:

Part a) The volume of the air is [tex]V=7,794.78\ cm^{3}[/tex]

Part b) The volume of the plastic is [tex]V=386.45\ cm^{3}[/tex]

Step-by-step explanation:

we know that

The volume of the sphere is equal to

[tex]V=\frac{4}{3}\pi r^{3}[/tex]

step 1

Find the volume of the complete ball (air +plastic)

we have

[tex]r=25/2=12.5\ cm[/tex] ------> the radius is half the diameter

substitute

[tex]V=\frac{4}{3}\pi (12.5)^{3}[/tex]

[tex]V=8,181.23\ cm^{3}[/tex]

step 2

Find the volume of the air

we have that

The plastic is 2 mm thick

Convert to cm

2 mm=2/10=0.2 cm

so

The radius of the interior of the ball is

[tex]r=12.5-0.2=12.3\ cm[/tex]

substitute

[tex]V=\frac{4}{3}\pi (12.3)^{3}[/tex]

[tex]V=7,794.78\ cm^{3}[/tex] -----> this is the volume of the air (interior of the ball)

step 3

Find the volume of the plastic

we know that

The volume of the plastic is equal to the volume of the complete ball minus the volume of the air

so

[tex]8,181.23\ cm^{3}-7,794.78\ cm^{3}=386.45\ cm^{3}[/tex]

Answer:

Volume of air is  [tex]7797918.85 mm^3[/tex] and volume of plastic is  [tex]386604.9523 mm^3[/tex]

Step-by-step explanation:

Diameter of ball = 25 cm = 250 mm

Radius of ball = [tex]\frac{250}{2}=125 mm[/tex]

Outer radius R = 125 mm

Thickness = 2mm

Inner radius r = 125-2  = 123 mm

Ball is in the shape of sphere = [tex]\frac{4}{3} \pi r^3[/tex]

For volume of air inside the ball we will consider the inner radius

Volume of air =[tex]\frac{4}{3} \pi r^3[/tex]

                       =[tex]\frac{4}{3} \times \frac{22}{7} \times 123^3[/tex]

                       =[tex]7797918.85 mm^3[/tex]

Volume of plastic = Outer volume - Inner Volume

                            =[tex]\frac{4}{3} \pi R^3 - \frac{4}{3} \pi r^3[/tex]

                            =[tex]\frac{4}{3} \pi (R^3 - r^3)[/tex]

                            =[tex]\frac{4}{3} \times \frac{22}{7}(125^3 - 123^3)[/tex]

                            =[tex]386604.9523 mm^3[/tex]

Hence Volume of air is  [tex]7797918.85 mm^3[/tex] and volume of plastic is  [tex]386604.9523 mm^3[/tex]