Respuesta :
Answer:
[tex]0.022 = \displaystyle\frac{1}{10}\times 0.22\\\\=\displaystyle\frac{1}{10}\times (\frac{2}{10} + \frac{2}{100})\\\\=\displaystyle\frac{2}{100} + \frac{2}{1000}[/tex]
Step-by-step explanation:
We are given the following in the question:
0.22 and 0.22
We have to compare the values of 2 in the given numbers.
Expanding the given numbers we have,
[tex]0.22 = 0 + \displaystyle\frac{2}{10} + \frac{2}{100}\\\\0.022 = 0 + \frac{2}{100} + \frac{2}{1000}[/tex]
In 0.22 the first two appears at the tenths position followed ny another 2 whereas in 0.022, the first 2 appears on the hundredths position followed by another 2
Thus, if we compare the values
[tex]0.22 > 0.022\\\text{Comparing 2's, we get}\\\\\displaystyle\frac{2}{10} + \frac{2}{100} > \frac{2}{100} + \frac{2}{1000}[/tex].
Relation:
[tex]0.022 = \displaystyle\frac{1}{10}\times 0.22\\\\=\displaystyle\frac{1}{10}\times (\frac{2}{10} + \frac{2}{100})\\\\=\displaystyle\frac{2}{100} + \frac{2}{1000}[/tex]