contestada

A series AC circuit contains a resistor, an inductor of 150 mH, a capacitor of 5.00 mF, and a generator with DVmax 5 240 V operating at 50.0 Hz. The maximum current in the circuit is 100 mA. Calculate (a) the inductive reactance, (b) the capacitive reactance, (c) the impedance, (d) the resistance in the circuit, and (e) the phase angle between the current and the generator voltage.

Respuesta :

Given:

Inductance, L = 150 mH

Capacitance, C = 5.00 mF

[tex]\Delta V_{max}[/tex] = 240 V

frequency, f = 50Hz

[tex]I_{max}[/tex] = 100 mA

Solution:

To calculate the parameters of the given circuit series RLC circuit:

angular frequency, [tex]\omega[/tex] =  [tex]2\pi f = 2\pi \times50 = 100\pi [/tex]

a). Inductive reactance,  [tex]X_{L}[/tex] is given by:

[tex]\X_{L} = \omega L = 100\pi \times 150\times 10^{-3} = 47.12\Omega [/tex]

[tex]X_{L} = 47.12\Omega[/tex] 

b). The capacitive reactance,  [tex]X_{C}[/tex] is given by:

[tex]\X_{C} = \frac{1}{\omega C} = \frac{1}{2\pi fC} = \frac{1}{2\pi \times 50\times 5.00\times 10^{-3}} = 0.636\Omega [/tex]

[tex]X_{C} = 0.636\Omega[/tex]

c). Impedance, Z = [tex]\frac{\Delta V_{max}}{I_{max}} = \frac{240}{100\times 10^{-3}} = 2400\Omega [/tex]

[tex]Z = 2400\Omega[/tex]

d). Resistance, R is given by:

[tex]Z = \sqrt {R^{2} + (X_{L} - X_{C})}[/tex]

[tex]2400^{2} = R^{2} + (47.12 - 0.636)^{2}[/tex]

[tex]R = \sqrt {5757839.238}[/tex]

[tex]R = 2399.5\Omega[/tex]

e). Phase angle between current and the generator voltage is given by:

[tex]tan\phi = \frac{X_{L} - X_{C}}{R}[/tex]

[tex]\phi =tan^{-1}( \frac{X_{L} - X_{C}}{R})[/tex]

[tex]\phi =tan^{-1}( \frac{47.12 - 0.636}{2399.5}) = tan^{-1}{0.0.01937}[/tex]

[tex]\phi = 1.11^{\circ}[/tex]