A resistor (R 5 9.00 3 102 V), a capacitor (C 5 0.250 mF), and an inductor (L 5 2.50 H) are connected in series across a 2.40 3 102-Hz AC source for which DVmax 5 1.40 3 102 V. Calculate (a) the impedance of the circuit, (b) the maximum current delivered by the source, and (c) the phase angle between the current and voltage. (d)

Respuesta :

Explanation:

It is given that,

Resistance, [tex]R=9\times 10^2\ \Omega[/tex]

Capacitance, [tex]C=0.25\ mF=0.25\times 10^{-3}\ F[/tex]

Inductance, L = 2.5 H

Frequency, [tex]f=2.4\times 10^2\ Hz[/tex]

Maximum voltage, [tex]V_{max}=1.4\times 10^2\ V[/tex]

(a) Impedance of the circuit is given by :

[tex]Z=\sqrt{R^2+(X_L-X_C)^2}[/tex]...............(1)

[tex]X_L=2\pi fL[/tex]

[tex]X_L=2\pi \times 2.4\times 10^2\times 2.5=3769.91\ \Omega[/tex]

[tex]X_C=\dfrac{1}{2\pi fC}[/tex]

[tex]X_C=\dfrac{1}{2\pi \times 2.4\times 10^2\times 0.25\times 10^{-3}}[/tex]

[tex]X_C=2.65\ \Omega[/tex]

Impedance, [tex]Z=\sqrt{(9\times 10^2)^2+(3769.91-2.65)^2}[/tex]

Z = 3873.27 ohms

(b) Using Ohm's law, [tex]I_{max}=\dfrac{V_{max}}{R}[/tex]

[tex]I_{max}=\dfrac{1.4\times 10^2}{9\times 10^2}[/tex]

[tex]I_{max}=0.15\ A[/tex]

(c) Phase angle is given by :

[tex]\phi=tan^{-1}(\dfrac{X_L-X_C}{R})[/tex]

[tex]\phi=tan^{-1}(\dfrac{3769.91-2.65}{9\times 10^2})[/tex]

[tex]\phi=76.5^{\circ}[/tex]

Hence, this is the required solution.