Answer:
[tex](x^5y)^{\frac{1}{3}}= x^{\frac{5}{3}} \times y^{\frac{1}{3}}[/tex]
Step-by-step explanation:
We are given our expression as
[tex]\sqrt[3]{x^5y}[/tex]
The property of exponent says that
[tex]\sqrt[n]{x} =x^{\frac{1}{n}}[/tex]
Hence
[tex]\sqrt[3]{x^5y}= (x^5y)^{\frac{1}{3}}[/tex]
Another property says
[tex](ab)^n=a^n \times b^n[/tex]
Hence
[tex](x^5y)^{\frac{1}{3}}= x^{\frac{5}{3}} \times y^{\frac{1}{3}}[/tex]
Hence option B is correct.