One way to do this is to notice
[tex]\dfrac{17\pi}{12}=\dfrac\pi6+\dfrac{5\pi}4[/tex]
Then
[tex]\tan\dfrac{17\pi}{12}=\tan\left(\dfrac\pi6+\dfrac{5\pi}4\right)=\dfrac{\tan\frac\pi6+\tan\frac{5\pi}4}{1-\tan\frac\pi6\tan\frac{5\pi}4}[/tex]
We have
[tex]\tan\dfrac\pi6=\dfrac{\sin\frac\pi6}{\cos\frac\pi6}=\dfrac{\frac12}{\frac{\sqrt3}2}=\dfrac1{\sqrt3}[/tex]
and since [tex]\tan x[/tex] has a period of [tex]\pi[/tex],
[tex]\tan\dfrac{5\pi}4=\tan\left(\pi+\dfrac\pi4\right)=\tan\dfrac\pi4=1[/tex]
and so
[tex]\tan\dfrac{17\pi}{12}=\dfrac{\frac1{\sqrt3}+1}{1-\frac1{\sqrt3}}=\dfrac{1+\sqrt3}{\sqrt3-1}=2+\sqrt3[/tex]