Answer : The final equilibrium temperature of the water and iron is, 537.12 K
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.
[tex]q_1=-q_2[/tex]
[tex]m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)[/tex]
where,
[tex]c_1[/tex] = specific heat of iron = 560 J/(kg.K)
[tex]c_1[/tex] = specific heat of water = 4186 J/(kg.K)
[tex]m_1[/tex] = mass of iron = 825 g
[tex]m_2[/tex] = mass of water = 40 g
[tex]T_f[/tex] = final temperature of water and iron = ?
[tex]T_1[/tex] = initial temperature of iron = [tex]352^oC=273+352=625K[/tex]
[tex]T_2[/tex] = initial temperature of water = [tex]20^oC=273+20=293K[/tex]
Now put all the given values in the above formula, we get:
[tex](825\times 10^{-3}kg)\times 560J/(kg.K)\times (T_f-625K)=-(40\times 10^{-3}kg)\times 4186J/(kg.K)\times (T_f-293K)[/tex]
[tex]T_f=537.12K[/tex]
Therefore, the final equilibrium temperature of the water and iron is, 537.12 K