Respuesta :
Answer:
(5+x)/x
Step-by-step explanation:
Given
h(x)= 5+x
k(x)= 1/x
(koh)(x)=?
Here you multiply
1/x( 5+x)
5/x +x/x
5/x+1 or
5/x +x/x
(5+x)/x
For this case we have the following functions:
[tex]h (x) = 5 + x\\k (x) = \frac {1} {x}[/tex]
We must find [tex](k_ {0} h) (x)[/tex]:
By definition of compound functions we have to:
[tex](k_ {0} h) (x) = k (h (x)[/tex]
So:
[tex]k (h (x) = \frac {1} {5 + x}[/tex]
Finally:
[tex](k_ {0} h) (x) = \frac {1} {5 + x}[/tex]
Answer:
[tex](k_ {0} h) (x) = \frac {1} {5 + x}[/tex]