Respuesta :

lucic

Answer:

(5+x)/x

Step-by-step explanation:

Given

h(x)= 5+x

k(x)= 1/x

(koh)(x)=?

Here you multiply

1/x( 5+x)

5/x +x/x

5/x+1 or

5/x +x/x

(5+x)/x

For this case we have the following functions:

[tex]h (x) = 5 + x\\k (x) = \frac {1} {x}[/tex]

We must find [tex](k_ {0} h) (x)[/tex]:

By definition of compound functions we have to:

[tex](k_ {0} h) (x) = k (h (x)[/tex]

So:

[tex]k (h (x) = \frac {1} {5 + x}[/tex]

Finally:

[tex](k_ {0} h) (x) = \frac {1} {5 + x}[/tex]

Answer:

[tex](k_ {0} h) (x) = \frac {1} {5 + x}[/tex]