If anybody knew how to do this, that would be great thanks!

Answer:
[tex]\large\boxed{x=k\pi\ \vee\ x=\dfrac{\pi}{2}+k\pi\ \vee\ x=\pm\dfrac{2\pi}{3}+2k\pi,\ k\in\mathbb{Z}}[/tex]
Step-by-step explanation:
[tex]\sin3x+\sin2x+\sin x=0\\\\\sin3x=\sin(2x+x)\\\text{use}\ \sin(a+b)=\sin a\cos b+\sin b\cos a\\\\=\sin2x\cos x+\sin x\cos2x\\\text{use}\ \sin2a=2\sin a\cos a\ \text{and}\ \cos2a=\cos^2x-\sin^2a\\\\=2\sin x\cos x\cos x+\sin x(\cos^2x-\sin^2x)\\=2\sin x\cos^2x+\sin x\cos^2x-\sin^3x\\=3\sin x\cos^2x-\sin^3x[/tex]
[tex]\text{come back to the equation:}\\\\3\sin x\cos^2x-\sin^3x+2\sin x\cos x+\sin x=0\qquad\text{distributive}\\\\\sin x(3\cos^2x-\sin^2x+2\cos x+1)=0\\\\\sin x(3\cos^2x+2\cos x+\underbrace{(1-\sin^2x)}_{=\cos^2x})=0\\\text{use}\ \sin^2x+\cos^2x=1\to\cos^2x=1-\sin^2x\\\\\sin x(3\cos^2x+2\cos x+\cos^2x)=0\\\\\sin x(4\cos^2x+2\cos x)=0\qquad\text{distributive}\\\\\sin x\cos x(4\cos x+2)=0\iff\sin x\cos x=0\ or\ 4\cos x+2=0\\\\\sin x\cos x=0\iff\sin x=0\ or\ \cos x=0[/tex]
[tex]\sin x=0\iff \boxed{x=k\pi},\ k\in\mathbb{Z}\\\\\cos x=0\iff \boxed{x=\dfrac{\pi}{2}+k\pi},\ k\in\mathbb{Z}\\\\4\cos x+2=0\qquad\text{subtract 2 from both sides}\\4\cos x=-2\qquad\text{divide both sides by 4}\\\cos x=-\dfrac{1}{2}\iff \boxed{x=\pm\dfrac{2\pi}{3}+2k\pi},\ k\in\mathbb{Z}[/tex]