Respuesta :
Answer:
magnetic flux ΦB = 0.450324 ×[tex]10^{-7}[/tex] weber
current I = 1.02484 [tex]10^{-8}[/tex] A
Explanation:
Given data
length a = 2.2 cm = 0.022 m
width b = 0.80 cm = 0.008 m
Resistance R = 0.40 ohms
current I = 4.7 A
speed v = 3.2 mm/s = 0.0032 m/s
distance r = 1.5 b = 1.5 (0.008) = 0.012
to find out
magnitude of magnetic flux and the current induced
solution
we will find magnitude of magnetic flux thorough this formula that is
ΦB = ( μ I(a) /2 π ) ln [(r + b/2 ) /( r -b/2)]
here μ is 4π ×[tex]10^{-7}[/tex] put all value
ΦB = (4π ×[tex]10^{-7}[/tex] 4.7 (0.022) /2 π ) ln [(0.012+ 0.008/2 ) /( 0.012 -0.008/2)]
ΦB = 0.450324 ×[tex]10^{-7}[/tex] weber
and
current induced is
current = ε / R
current = μ I(a) bv / 2πR [(r² ) - (b/2 )² ]
put all value
current = μ I(a) bv / 2πR [(r² ) - (b/2 )² ]
current = 4π ×[tex]10^{-7}[/tex] (4.7) (0.022) (0.008) (0.0032) / 2π(0.40) [(0.012² ) - (0.008/2 )² ]
current = 1.02484 [tex]10^{-8}[/tex] A
The magnitude of the flux through the loop is [tex]1.433 \times 10^{-8} \ Wb[/tex].
The current induced in the loop is [tex]1.034 \times 10^{-5} \ A[/tex].
The given parameters;
- length of the rectangular loop, a = 2.2 cm
- width of the loop, b = 0.8 cm
- resistance, R = 0.4m ohms
- current in the wire, I = 4.7 A
- the center of the loop, r = 1.5b
- speed of the loop, v = 3.2 mm/s
The magnitude of the flux through the loop is calculated as follows;
[tex]\Phi _B = \int\limits {B} \, dA \\\\\Phi _B = \int\limits^{r + b/2}_{r - b/2} {(\frac{\mu_o I}{2\pi r}) } \, adr\\\\ \Phi _B = (\frac{\mu_o I a}{2\pi }) \ ln(r)\\\\ \Phi _B = (\frac{\mu_o I a}{2\pi }) \ ln (\frac{r \ +\ b/2}{r\ - \ b/2} )\\\\\Phi _B = (\frac{\mu_o I a}{2\pi }) \ ln (\frac{1.5b \ +\ b/2}{1.5 b\ - \ b/2} )\\\\\Phi _B = (\frac{\mu_o I a}{2\pi }) \ ln ( 2.0)\\\\\Phi _B = (\frac{4\pi \times 10^{-7} \times 4.7 \times 0.022 }{2\pi }) \ ln ( 2.0)\\\\|\Phi _B| = 1.433 \times 10^{-8} \ Wb[/tex]
The current induced in the loop is calculated by applying Faradays law;
[tex]\varepsilon = IR\\\\\frac{d\Phi_B }{dt} = IR\\\\I = \frac{d\Phi_B }{R dt} = (\frac{\Phi_B }{R} )[\frac{d}{dt} \ ln(\frac{r + b/2}{r - b/2})]\\\\I = \frac{\mu_0 I a}{2\pi R} (\frac{bv}{r^2\ - \ (b/2)^2} ) = \frac{\mu_0 I a}{2\pi R} (\frac{bv}{2b^2} ) \\\\I = \frac{4\pi \times 10^{-7} \times 4.7 \times 0.022}{2\pi \times 0.4 \times 10^{-3}} (\frac{0.008 \times 3.2 \times 10^{-3} }{2( 0.008)^2} )\\\\I = 1.034 \times 10^{-5} \ A\\\\[/tex]
Learn more here:https://brainly.com/question/13369951