Answer: [tex]v_{3}[/tex] = 512.3 m/s
Explanation:
Given:
M = 37 kg
v = 342 m/s
[tex]m_{1}[/tex] = 5 kg
[tex]v_{1}[/tex] = 311 m/s
[tex]m_{2}[/tex] = 4 kg
[tex]v_{2}[/tex] = 402 m/s
∴ [tex]m_{3}[/tex] = M - [tex]m_{1}[/tex] - [tex]m_{2}[/tex]
[tex]m_{3}[/tex] = 28 kg
Now, to compute the speed of third fragment we will apply conservation of momentum:
M[tex]\times[/tex]v = [tex]m_{1}\times v_{1}[/tex] + [tex]m_{2}\times v_{2}[/tex] +[tex]m_{3}\times v_{3}[/tex]
Putting values in the equation given above:
37[tex]\times[/tex](342)[tex]\hat{i}[/tex] = 5[tex]\times[/tex](311)[tex]\hat{j}[/tex] + 4[tex]\times[/tex](402)[tex]\hat{-i}[/tex] + 28[tex]\times v_{3}[/tex]
[tex]v_{3}[/tex] = 509.3 m/s [tex]\hat{i}[/tex] - 55.53 m/s [tex]\hat{j}[/tex]
Now, the magnitude of velocity of the third particle is;
[tex]v_{3}[/tex] = [tex]\sqrt{509.3^{2} + 55.53^{2} }[/tex]
[tex]v_{3}[/tex] = 512.3 m/s