Answer: Domain : [tex]0 \leq x\leq 1800[/tex]
Explanation:
Given :
P = [tex]-\frac{1}{9} x+200[/tex]
where;
P is the price in dollars.
x is the quantity sold of a certain product.
The revenue R(x) is given as ;
R(x) = [tex]P\times x [/tex]
Therefore R(x) = [tex]-\frac{1}{9} x^{2} +200x[/tex]
To find the domain of R(x), we set R(x)=0
[tex]-\frac{1}{9} x^{2} +200x[/tex] = 0
[tex]x(-\frac{1}{9} x +200)[/tex] = 0
[tex]x = 0 , x = 1800[/tex]
Domain of x is : [tex]0 \leq x\leq 1800[/tex]