The price p​ (in dollars) and the quantity x sold of a certain product obey the demand equation p equals negative one ninth x plus 200 . What is the domain of R?

Respuesta :

Answer: Domain :  [tex]0 \leq x\leq 1800[/tex]

Explanation:

Given :

P = [tex]-\frac{1}{9} x+200[/tex]

where;

P is the price in dollars.

x is the quantity sold of a certain product.

The revenue R(x) is given as ;

R(x) = [tex]P\times x [/tex]

Therefore R(x) = [tex]-\frac{1}{9} x^{2} +200x[/tex]

To find the domain of R(x), we set R(x)=0

[tex]-\frac{1}{9} x^{2} +200x[/tex] = 0

[tex]x(-\frac{1}{9} x +200)[/tex] = 0

[tex]x = 0 , x = 1800[/tex]

Domain of x is : [tex]0 \leq x\leq 1800[/tex]