Answer: Lower limit = 88.1
Upper limit = 126.1
Explanation:
Given :
Sample mean = [tex]\overline{x}[/tex] = 107.1
Sample standard deviation = s = 30.7
Sample size = n = 9
∴ Degree of freedom = [tex]d_{f}[/tex] = n - 1 = 8
∝ = 1 - confidence interval = 1 - 0.90 = 0.10
[tex]\frac{\alpha}{2}[/tex] = 0.05
From t-distribution table;
[tex]t_{0.05}[/tex] = 1.860
∴ Margin of error(MOE) = [tex]t_{0.05}[/tex]×[tex]\frac{30.7 }{\sqrt{9} }[/tex]
= 1.860×[tex]\frac{30.7 }{\sqrt{9} }[/tex]
=19.03
∴ Lower Limit = 107.1 - 19.03 = 88.1
Upper limit = 107.1 + 19.03 = 126.1