Respuesta :
Answer:
Last option: [tex]8x^4-32x^3+24x^2[/tex]
Step-by-step explanation:
Given the expression [tex]4x^2(2x^2-8x + 6)[/tex], you need to remember the Product of powers property, which states the following:
[tex](a^m)(a^n)=a^{(m+n)}[/tex]
Knowing this, you can apply the Distributive property. Therefore, you get:
[tex](4x^2)(2x^2)-(8x)(4x^2) +(6)(4x^2)=8x^{(2+2)}-32x^{(1+2)}+24x^2=8x^4-32x^3+24x^2[/tex]
You can observe that this matches with the las option.