Answer: option b.
Step-by-step explanation:
You need to remember that:
[tex]b^\frac{m}{n}=\sqrt[n]{b^m}\\\\\sqrt[n]{a^n}=a[/tex]
Then, you can rewrite [tex](-32)^\frac{3}{5}[/tex] as:
[tex]=\sqrt[5]{(-32)^3}[/tex]
Now you need to descompose 32 into its prime factors:
[tex]32=2*2*2*2*2=2^5[/tex]
Rewriting:
[tex]=\sqrt[5]{(-2^5)^3}[/tex]
The power of a power property states that:
[tex](a^b)^c=a^{(bc)}[/tex]
Then:
[tex]=\sqrt[5]{(-2)^{15}}=(-2)^3=-8[/tex]