Answer:
[tex]\frac{3}{4}[/tex]
Step-by-step explanation:
The given expression is:
[tex]\frac{3m-6}{4m+12} \cdot \frac{m^2+5m+6}{m^2-4}[/tex]
We factor to get:
[tex]\frac{3(m-2)}{4(m+3)} \cdot \frac{(m+2)(m+3)}{(m-2)(m+2)}[/tex]
Cancel out the common factors to get:
[tex]\frac{3(m-2)}{4(m+3)} \cdot \frac{(m+3)}{(m-2)}[/tex]
We cancel further to get:
[tex]\frac{3(m-2)}{4(m+3)} \cdot\frac{(m+3)}{(m-2)}=\frac{3}{4}[/tex]
The correct chice is B.