Respuesta :
Answer:
Option B R(2,4) is correct
Step-by-step explanation:
The equation of the circle is:
[tex](x-a)^2 + (y-b)^2 = r^2[/tex]
Where r = radius
a and b are coordinates of the center of circle.
To check which point lies on a circle, we need to verify the equation
[tex](x-6)^2 + (y-1)^2 = (5)^2[/tex]
We will check for each option.
Option A Q(1,11)
x=1 and y =11
[tex](1-6)^2 + (11-1)^2 = 25\\(-5)^2 + (10)^2 = 25\\25 + 100 = 25\\125 \neq 25[/tex]
So, Option A is incorrect
Option B R(2,4)
x =2 and y = 4
[tex](2-6)^2 + (4-1)^2 = 25\\(-4)^2 + (3)^2 = 25\\16 + 9 = 25\\25 = 25[/tex]
Option B is correct.
Option C S(4,-4)
x =4 and y =-4
[tex](4-6)^2 + (-4-1)^2 = 25\\(-2)^2 + (-5)^2 = 25\\4 + 25 = 25\\29 \neq 25[/tex]
Option C is incorrect
Option D T(9,-2)
x =9 and y =-2
[tex](9-6)^2 + (-2-1)^2 = 25\\(3)^2 + (-3)^2 = 25\\9 + 9 = 25\\18 \neq 25[/tex]
Option D is incorrect.
Answer:
B.
Step-by-step explanation:
The general equation of a circle is [tex](x-h)^{2}+(y-k)^{2} = r^{2}[/tex] where (h,k) is the center and r the radius. In this case, the general equation of the circle with radius 5 and center at (6,1) is [tex](x-6)^{2}+(y-1)^{2} = 5^{2}[/tex], so the point that satisfies the equation will be in the circle.
A. [tex](1-6)^{2}+(11-1)^{2} = 25+100 = 125[/tex] this option is not correct.
B. [tex](2-6)^{2}+(4-1)^{2} = 16+9= 25[/tex] this option is correct so is the answer.