Respuesta :

Answer: The system of equations has no solutions.

Step-by-step explanation:

Identify the equation as:

[tex]x + 2y - z=3[/tex]   [Equation 1]

[tex]2x -y + 2z=6[/tex]    [Equation 2]

[tex]x - 3y + 3z=4[/tex]    [Equation 3]

Multiply  [Equation 1]  by -2 and add this to [Equation 2] :

[tex](-2)(x + 2y - z)=3(-2)[/tex]

[tex]\left \{ {{-2x - 4y +2z=-6} \atop {2x -y + 2z=6}} \right.\\ ..........................\\-5y+4z=0[/tex]

 Find another equation of two variables: Multiply  [Equation 3]  by -2 and add this to [Equation 2]:

[tex](-2)(x - 3y + 3z)=4(-2)[/tex]  

[tex]\left \{ {{2x -y + 2z=6} \atop {-2x +6y -6z=-8}} \right.\\........................\\5y-4z=-2[/tex]

Then you get this new system of equations. When you add them, you get:

[tex]\left \{ {{-5y+4z=0} \atop {5y-4z=-2}} \right.\\..................\\0=-2[/tex]

Since the obtained is not possible, the system of equations has no solutions.