Respuesta :
Answer:
The height of the can is [tex]h=9\ in[/tex]
Step-by-step explanation:
we know that
The surface area of the cylinder (can of peas) is equl to
[tex]SA=2\pi r^{2}+2\pi rh[/tex]
we have
[tex]SA=180.64\ in^{2}[/tex]
[tex]r=5/2=2.5\ in[/tex] ----> the radius is half the diameter
assume
[tex]\pi=3.14[/tex]
substitute and solve for h
[tex]180.64=2(3.14)(2.5)^{2}+2(3.14)(2.5)h[/tex]
[tex]180.64=39.25+15.70h[/tex]
[tex]h=[180.64-39.25]/15.70[/tex]
[tex]h=9\ in[/tex]
The height of the can of peas is equal to 33.628 inches.
Given the following data:
- Diameter of can = 5 inches.
- Surface area of can = 180.64
[tex]Radius = \frac{5}{2} = 2.5\;centimeters.[/tex]
To calculate the height of the can of peas:
How to calculate surface area.
Note: A can of peas is cylindrical in nature.
Mathematically, the surface area (SA) of a cylinder is given by this formula:
[tex] SA = 2\pi rh + 2\pi r^2[/tex]
Where:
- h is the height.
- r is the radius.
Making h the subject of formula, we have:
[tex]h= \frac{SA-2\pi r^2 }{2\pi r} [/tex]
Substituting the given parameters into the formula, we have;
[tex]h= \frac{180.64-(2\times 2.5^2) }{2\times 2.5} \\ \\ h= \frac{180.64-(2\times 6.25) }{5} [/tex]
Height, h = 33.628 inches.
Read more on surface area here: https://brainly.com/question/21367171