contestada

For 20 points! please help
Let z=13+7i and w=3(cos(1.43)+isin(1.43)
a. convert zw using De Moivre's theorem
b. calculate z/w using De Moivre's theorem

Respuesta :

Answer:

a)zw  = 44.295 cos(1.924) +isin(1.924))

b) z/w= 4.921 cos(-0.936) + isin(-0.936)

Step-by-step explanation:

Given:

z=13+7i

w=3(cos(1.43)+isin(1.43)  

a. convert zw using De Moivre's theorem  

First coverting z into  polar form:

13^2 + 7^2  = 14.765

[tex]\sqrt{14.765}[/tex] =r

θ= arctan (7/13)

 = 0.49394                            (28.301 in degrees)

z= 14.765(cos(0.49394)+isin(0.49394)  )

Now finding zw

zw= 14.765(cos(.494)+isin(.494))×3(cos(1.43)+isin(1.43))

Using De Moivre's theorem, the modulus will be multiplied

14.765 x 3=44.295

whereas the angles will be added

.494+1.43=1.924

Thus:

zw  = 44.295 cos(1.924) +isin(1.924))

b)

finding z/w

z/w= 14.765(cos(.494)+isin(.494)) / 3(cos(1.43)+isin(1.43))

Using De Moivre's theorem, the modulus will be divided

14.765 / 3 = 4.921

whereas the angles will be subtracted:

.494-1.43=-0.936

Thus:

z/w= 4.921 cos(-0.936) + isin(-0.936) !