Which function has real zeros at x = −10 and x = −6? f(x) = x2 + 16x + 60 f(x) = x2 − 16x + 60 f(x) = x2 + 4x + 60 f(x) = x2 − 4x + 60

Respuesta :

gmany

Answer:

[tex]\large\boxed{f(x)=x^2+16x+60}[/tex]

Step-by-step explanation:

The factored form of a quadratic function:

[tex]f(x)=ax^2+bx+c=a(x-x_1)(x-x_2)[/tex]

x₁, x₂ - the zeros

We have x₁ = -10 and x₂ = -6.

Substitute:

[tex]f(x)=(x-(-10))(x-(-6))=(x+10)(x+6)[/tex]

Use FOIL: (a + b)(c + d) = ac + ad + bc + bd

[tex]f(x)=(x)(x)+(x)(6)+(10)(x)+(10)(6)\\\\f(x)=x^2+6x+10x+60\\\\f(x)=x^2+16x+60[/tex]

Answer:

Its A on edge

Step-by-step explanation: