Respuesta :

Answer:

a

Step-by-step explanation:

Answer:

Option (A) and (D) are not trigonometric identities.

Step-by-step explanation:

Option (A )  tan²x + sec²x = 1

Since [tex]tanx =\frac{sinx}{cosx}[/tex] and [tex]secx =\frac{1}{cosx}[/tex]

put these in left hand side of tan²x + sec²x = 1

[tex](\frac{sinx}{cosx})^{2}[/tex] + [tex](\frac{1}{cosx})^{2}[/tex]

[tex](\frac{sin^{2}x}{cos^{2}x})[/tex] + [tex](\frac{1}{cos^{2}x})[/tex]

Take L.C.M of above expression,

[tex](\frac{sin^{2}x + 1}{cos^{2}x})[/tex]

since, sin²x  = 1 - cos²x

[tex](\frac{1-cos^{2}x+1}{cos^{2}x})[/tex]

[tex](\frac{2-cos^{2}x}{cos^{2}x})[/tex]

we are not getting 1

so, this is not a trigonometric identity.

Option (A) is correct option

Option (B)  sin²x + cos²x = 1

This is an trigonometric identity

Option (C)  sec²x - tan²x = 1

Divide the trigonometric identity sin²x + cos²x = 1 both the sides by cos²x so, we get

[tex]\frac{sin^{2}x}{cos^{2}x}+\frac{cos^{2}x}{cos^{2}x}\,=\,\frac{1}{cos^{2}x}[/tex]

[tex]tan^{2}x}+1\,=\,sec^{2}x}[/tex]

subtract both the sides by tan²x in above expression

[tex]tan^{2}x}+1\,-tan^{2}x=\,sec^{2}x-tan^{2}x[/tex]

[tex]1=\,sec^{2}x}-tan^{2}x[/tex]

Hence, this is the trigonometric identity.

Option (D)  sec²x + cosec²x = 1

Since [tex]secx =\frac{1}{cosx}[/tex] and [tex]cosecx =\frac{1}{sinx}[/tex]

put these in left hand side of sec²x + cosec²x = 1

[tex](\frac{1}{cosx})^{2}+(\frac{1}{sinx})^{2}[/tex]

[tex]\frac{1}{cos^{2}x}+\frac{1}{sin^{2}x}[/tex]

we are not getting 1

so, this is not a trigonometric identity.

Option (D) is correct option.

Hence, Option (A) and (D) are not trigonometric identities.