If m angle B=m angle D=41, find m angle C so that quadrilateral ABCD is a parallelogram

ANSWER
139°
EXPLANATION
One of the interior angle properties of a parallelogram is that adjacent interior angles are supplementary.
This means that, the adjacent interior angles add up to 180°.
If
[tex]m \angle \: B = m \angle \: D = 41[/tex]
Then
[tex]m \angle \: C + m \angle \: D = 180 \degree[/tex]
OR
[tex]m \angle \: B + m \angle \:C= 180 \degree[/tex]
[tex] \implies41 \degree + m \angle \:C= 180 \degree[/tex]
[tex]\implies m\angle \:C= 180 \degree - 41 \degree = 139 \degree[/tex]