Respuesta :

Answer:

[tex]f^{-1}(x)=\frac{x}{2}-\frac{1}{2}[/tex]

Step-by-step explanation:

It is called an inverse or reciprocal function of [tex]f[/tex] to another function [tex]f^{-1}[/tex] that fulfills that:

If [tex]f(a)=b[/tex], then [tex]f^{-1} (b)=a[/tex]

To calculate the inverse of the function [tex]y=2x+1[/tex]

[tex]f(x)=y[/tex]

So, rewritting the function

[tex]f(x)=2x+1[/tex]

Changing the x for y

[tex]x=2y+1[/tex]

Let's clear y

[tex]y=\frac{x-1}{2}[/tex]

Ordering the function above

[tex]y=\frac{x}{2}-\frac{1}{2}[/tex]

So, the inverse of the function [tex]f(x)=2x+1[/tex] is:

[tex]f^{-1}(x)=\frac{x}{2}-\frac{1}{2}[/tex]

.