The escape speed from Planet X is 20,000 m/s. Planet Y has the same radius as Planet X but is twice as dense. What is the escape speed from Planet Y?

Respuesta :

Answer:

the escape speed from planet Y is [tex]\sqrt{2}[/tex] times the escape speed from planet X.

Explanation:

The escape speed from a surface of a planet is given by:

[tex]v=\sqrt{\frac{GM}{R}}[/tex]

where

G is the gravitational constant

M is the mass of the planet

R is the radius of the planet

Let's call M the mass of planet X and R its radius. So the speed

[tex]v_x=\sqrt{\frac{GM}{R}}[/tex]

corresponds to the escape speed from planet X.

Now we now that planet Y has:

- same radius of planet X: R' = R

- twice the density of planet X: d' = 2d

The mass of planet Y is given by

[tex]M' = d' V'[/tex]

where V' is the volume of the planet. However, since the two planets have same radius, they also have same volume, so we can write

[tex]M' = d' V= (2d)V = 2M[/tex]

which means that planet Y has twice the mass of planet X. So, the escape speed of planet Y is

[tex]v'=\sqrt{\frac{GM'}{R}}=\sqrt{\frac{G(2M)}{R}}=\sqrt{2}(\sqrt{\frac{GM}{R}})=\sqrt{2} v[/tex]

so, the escape speed from planet Y is [tex]\sqrt{2}[/tex] times the escape speed from planet X.