Respuesta :

Answer:

[tex]5.5\ years[/tex]

Step-by-step explanation:

we know that

In this problem we have a exponential function of the form

[tex]f(x)=a(b^{x})[/tex]

where

x is the time in years

f(x) is the value of the stock

a is the initial value

b is the base

r is the rate

b=(1-r)

we have

[tex]a=\$15,000[/tex]

[tex]r=4\%=4/100=0.04[/tex]

[tex]b=(1-0.04)=0.96[/tex]

substitute

[tex]f(x)=15,000(0.96^{x})[/tex]

80% of original price is equal to

[tex]f(x)=0.80(15,000)=12,000[/tex]

so

For f(x)=12,000 ------> Find the value of x

[tex]12,000=15,000(0.96^{x})[/tex]

[tex](12/15)=(0.96^{x})[/tex]

Apply log both sides

[tex]log(12/15)=log(0.96^{x})[/tex]

[tex]log(12/15)=(x)log(0.96)[/tex]

[tex]x=log(12/15)/log(0.96)[/tex]

[tex]x=5.5\ years[/tex]