Respuesta :

Answer:

3rd Option is correct.

Step-by-step explanation:

Given Equation:

x² - 16x + 12 = 0

First We need to find solution of the given equation.

x² - 16x + 12 = 0

here, a = 1   , b = -16  &  c = 12

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-(-16)\pm\sqrt{(-16)^2-4(12)}}{2}[/tex]

[tex]x=\frac{16\pm\sqrt{256-48}}{2}[/tex]

[tex]x=\frac{16\pm\sqrt{208}}{2}[/tex]

[tex]x=\frac{16\pm4\sqrt{13}}{2}[/tex]

[tex]x=8+2\sqrt{13}\:\:andx=8-2\sqrt{13}[/tex]

Now,

Option 1).

( x - 8 )² = 144

x - 8 = ±√144

x - 8 = ±12

x = 8 + 12 = 20   and x = 8 - 12 = -4

Thus, This is not correct Option.

Option 2).

( x - 4 )² = 4

x - 4 = ±√4

x - 4 = ±2

x = 4 + 2 = 6   and x = 4 - 2 = 2

Thus, This is not correct Option.

Option 3).

( x - 8 )² = 52

x - 8 = ±√52

x - 8 = ±2√13

x  = 8 + 2√13   and x = 8 - 2√13

Thus, This is correct Option.

Option 4).

( x - 4 )² = 16

x - 4 = ±√116

x - 4 = ±4

x = 4 + 4 = 8  and x = 4 - 4 = 0

Thus, This is not correct Option.

Therefore, 3rd Option is correct.