Answer:
0.0129 V
Explanation:
The average emf induced in the coil is given by Faraday-Newmann-Lenz:
[tex]\epsilon=-\frac{\Delta \Phi_B}{\Delta t}[/tex]
where
[tex]\Delta \Phi_B[/tex] is the variation of magnetic flux through the coil
[tex]\Delta t = 15 s[/tex] is the time interval
Here we have
B = 0.50 T is the strength of the magnetic field
The radius of the coil is
r = 35 cm = 0.35 m
So the area is
[tex]A=\pi r^2 = \pi (0.35 m)^2=0.385 m^2[/tex]
The initial flux through the coil is
[tex]\Phi_i = BA = (0.50 T)(0.385 m^2)=0.193 Wb[/tex]
while the final flux is zero, since the coil has been completely removed from the magnetic field region; so, the variation of magnetic flux is
[tex]\Delta \Phi = \Phi_f - \Phi_i = -0.193 Wb[/tex]
and so, the average emf induced is
[tex]\epsilon=-\frac{-0.193 Wb}{15 s}=0.0129 V[/tex]