1. [tex]70.5\cdot 10^{-6} F[/tex]
The relationship between capacitance, charge and voltage across a capacitor is:
[tex]Q=CV[/tex]
where
Q is the charge
C is the capacitance
V is the voltage
In this problem,
[tex]C=47\mu F=47\cdot 10^{-6}F[/tex] is the capacitance
V = 1.5 V
Substituting, we find the charge on the capacitor, that is eventually transferred to the plant:
[tex]Q=(47\cdot 10^{-6}F)(1.5 V)=70.5\cdot 10^{-6} F[/tex]
2. 428.6 V/m
The electric field between the electrodes is given by
[tex]E=\frac{V}{d}[/tex]
where
V = 1.5 V is the potential difference across the electrodes
d = 3.5 mm = 0.0035 m is the distance between the electrodes
Substituting into the equation, we find
[tex]E=\frac{1.5 V}{0.0035 m}=428.6 V/m[/tex]