Respuesta :
Answer:
13 m/s^2
Explanation:
The acceleration of gravity near the surface of a planet is:
g = MG / R^2
For planet 1, g = 26 m/s^2.
The gravity on planet 2 in terms of the mass and radius of planet 1 is:
g = (2M)G / (2R^2)
g = 1/2 MG / R^2
Since MG/R^2 = 26 m/s^2, then:
g = 13 m/s^2
The free-fall acceleration on planet 2 is "13 m/s²".
According to the question,
→ [tex]g_1 = \frac{GM_1}{R_1^2}[/tex]
[tex]= 26 \ m/s^2[/tex]
→ [tex]g_2 = \frac{GM_2}{R_2^2}[/tex]
- [tex]M_2 = 2M_1[/tex]
- [tex]R_2 = 2R_1[/tex]
Now,
→ [tex]g_2 = \frac{G(2M_1)}{(2R_1)^2}[/tex]
[tex]= \frac{2GM_1}{4R_1^2}[/tex]
[tex]= \frac{1}{2} (\frac{GM_1}{R^2} )[/tex]
[tex]= \frac{1}{2} g_1[/tex]
[tex]= \frac{1}{2}\times 26[/tex]
[tex]= 13 \ m/s^2[/tex]
Thus the above answer is right.
Learn more:
https://brainly.com/question/24372530