Respuesta :

The prime factorization of 108 is

[tex]108 = 2^2\cdot 3^3[/tex]

This means that we have

[tex]\sqrt{-108} = \sqrt{(-1)\cdot2^2\cdot 3^3} = \sqrt{-1}\cdot\sqrt{2^2}\cdot\sqrt{3^3} = \sqrt{-1}\cdot\sqrt{2^2}\cdot\sqrt{3^2\cdot 3} = \sqrt{-1}\cdot\sqrt{2^2}\cdot\sqrt{3^2}\cdot\sqrt{3}[/tex]

We can simplify the squares and the square roots:

[tex]\sqrt{-1}\cdot\sqrt{2^2}\cdot\sqrt{3^2}\cdot\sqrt{3} = i\cdot 2\cdot 3 \cdot \sqrt{3} = 6i\sqrt{3}[/tex]

Similarly, we have

[tex]\sqrt{-3} = \sqrt{(-1)\cdot 3} = \sqrt{-1}\cdot\sqrt{3}=i\sqrt{3}[/tex]

So, the difference is

[tex]\sqrt{-108}-\sqrt{-3} = 6i\sqrt{3}-i\sqrt{3} = 5i\sqrt{3}[/tex]