Show work and explain with formulas.

4. If a_6 = 18 and a_13 = 32, find the sum of the 13 terms in an arithmetic sequence.

5. Find the sum (see picture).

6. Find the first three terms of the arithmetic series: a_1 = 17, a_n = 197, S_n = 2247

Show work and explain with formulas4 If a6 18 and a13 32 find the sum of the 13 terms in an arithmetic sequence5 Find the sum see picture6 Find the first three class=

Respuesta :

gmany

Answer:

[tex]\large\boxed{4.\ S_{13}=260}[/tex]

[tex]\large\boxed{5.\ \sum\limits_{k=1}^7(2k+5)=91}[/tex]

[tex]\large\boxed{6.\ a_1=17,\ a_2=26,\ a_3=35}[/tex]

Step-by-step explanation:

4.

We have:

[tex]a_6=18,\ a_{13}=32[/tex]

These are the terms of the arithmetic sequence.

We know:

[tex]a_n=a_1+(n-1)d[/tex]

Therefore

[tex]a_6=a_1+(6-1)d\ \text{and}\ a_{13}=a_1+(13-1)d\\\\a_6=a_1+5d\ \text{and}\ a_{13}=a_1+12d\\\\a_{13}-a_6=(a_1+12d)-(a_1+5d)\\\\a_{13}-a_6=a_1+12d-a_1-5d\\\\a_{13}-a_6=7d[/tex]

Substitute a₆ = 18 and a₁₃ = 32:

[tex]7d=32-18[/tex]

[tex]7d=14[/tex]             divide both sides by 7

[tex]d=2[/tex]

[tex]a_6=a_1+5d[/tex]

[tex]18=a_1+5(2)[/tex]

[tex]18=a_1+10[/tex]            subtract 10 from both sides

[tex]8=a_1\to a_1=8[/tex]

The formula of a sum of terms of an arithmetic sequence:

[tex]S_n=\dfrac{a_1+n_1}{2}\cdot n[/tex]

Substitute a₁ = 8, a₁₃ = 32 and n = 13:

[tex]S_{13}=\dfrac{8+32}{2}\cdot13=\dfrac{40}{2}\cdot13=20\cdot13=260[/tex]

===========================================

5.

We have

[tex]\sum\limits_{k=3}^7(2k+5)\to a_k=2k+5[/tex]

Calculate [tex]a_{k+1}[/tex]

[tex]a_{k+1}=2(k+1)+5=2k+2+5=2k+7[/tex]

Calculate the difference:

[tex]a_{k+1}-a_k=(2k+7)-(2k+5)=2k+7-2k-5=2[/tex]

It's the arithmetic sequence with first term

[tex]a_1=2(1)+5=2+5=7[/tex]

and common difference d = 2.

The formula of a sum of terms of an arithmetic sequence:

[tex]S_n=\dfrac{2a_1+(n-1)d}{2}\cdot n[/tex]

Substitute n = 7, a₁ = 7 and d = 2:

[tex]S_7=\dfrac{2(7)+(7-1)(2)}{2}\cdot7=\dfrac{14+(6)(2)}{2}\cdot7=\dfrac{14+12}{2}\cdot7=\dfrac{26}{2}\cdot7=(13)(7)\\\\S_7=91[/tex]

===========================================

6.

We have:

[tex]a_1=17,\ a_n=197,\ S_n=2247[/tex]

The formula for the n-th term of an arithmetic sequence:

[tex]a_n=a_1+(n-1)d[/tex]

The formula of the sum of terms of an arithmetic sequence:

[tex]S_n=\dfrac{2a_1+(n-1)d}{2}\cdot n[/tex]

Substitute:

[tex](1)\qquad 197=17+(n-1)d\\\\(2)\qquad2247=\dfrac{(2)(17)+(n-1)d}{2}\cdot n[/tex]

Convert the first equation:

[tex]197=17+(n-1)d[/tex]          subtract 17 from both sides

[tex]180=(n-1)d[/tex]    Substitute it to the second equation:

[tex]2247=\dfrac{34+180}{2}\cdot n\\\\2247=\dfrac{214}{2}\cdot n[/tex]

[tex]2247=107n[/tex]             divde both sides by 107

[tex]21=n\to n=21[/tex]

Put the value of n to the equation (n - 1)d = 180:

[tex](21-1)d=180[/tex]

[tex]20d=180[/tex]              divide both sides by 20

[tex]d=9[/tex]

Therefore we have the explicit formula for the nth term of an arithmetic sequence:

[tex]a_n=17+(n-1)(9)\\\\a_n=17+9n-9\\\\a_n=9n+8[/tex]

Put n = 1, n = 2 and n = 3:

[tex]a_1=9(1)+8=9+8=17\qquad\text{CORRECT :)}\\\\a_2=9(2)+8=18+8=26\\\\a_3=9(3)+8=27+8=35[/tex]