A quadratic equation of the form 0 = ax2 + bx + c has one real number solution. Which could be the equation? 0 = 2x2 – 4x + 1 0 = 2x2 – 5x + 3 0 = –2x2 – 4x – 2 0 = –2x2 – 3x – 1

Respuesta :

Answer:

[tex]0 = -2x^2 - 4x - 2[/tex]

Step-by-step explanation:

To solve this problem we must calculate the discriminant of each quadratic function.

Let [tex]ax ^ 2 + bx + c[/tex] be a quadratic function with a, b and c their real coefficients, then:

If [tex]b ^ 2 -4ac> 0[/tex] the function has 2 real solutions.

If [tex]b ^ 2 -4ac = 0[/tex] the function has 1 double real solution

If [tex]b ^ 2 -4ac <0[/tex] the function has complex solutions.

Now we calculate the discriminant for each of the functions:

[tex]0 = 2x^2 - 4x + 1[/tex]

[tex](-4) ^ 2 -4(2)(1) = 8[/tex] (Two real solutions)

-----------------------------------------------------------------------------------

[tex]0 = 2x^2- 5x + 3[/tex]

[tex](-5) ^ 2 -4(2)(3) = 1[/tex] (Two real solutions)

------------------------------------------------------------------------------------

[tex]0 = -2x^2 - 4x - 2[/tex]

[tex](-4) ^ 2 -4(-2)(- 2) = 0[/tex] (A real double solution)

------------------------------------------------------------------------------------

[tex]0 = -2x^2 - 3x - 1[/tex]

[tex](-3) ^ 2 -4(-2)(- 1) = 1[/tex] (Two real solutions)

-----------------------------------------------------------------------------------

The equation we want is:

[tex]0 = -2x^2 - 4x - 2[/tex]

Answer:

answer is c

Step-by-step explanation: