Respuesta :

Answer:

a. 9.33

b. 67.38°

Step-by-step explanation:

a) You can calculate the length  y as following:

[tex]sin\alpha=\frac{opposite}{hypotenuse}[/tex]

Where:

[tex]\alpha=51\°\\opposite=y\\hypotenuse=12[/tex]

Substitute values and solve for y:

[tex]sin(51\°)=\frac{y}{12}\\y=12*sin(51\°)\\y=9.33[/tex]

b. You can calculate the missing angle as following:

[tex]\theta=arctan(\frac{opposite}{adjacent})[/tex]

Where:

[tex]opposite=12\\adjacent=5[/tex]

When you substitute values  you obtain the following result:

[tex]\theta=arctan(\frac{12}{5})[/tex]

 [tex]\theta=67.38\°[/tex]

Answer:

y = 9.33

Ф = 67.38°

Step-by-step explanation:

We have given the figure.

We have to find the missing values.

As we know that:

sin Ф = perpendicular/hypotenuous

here Ф = 51 , perpendicular = y , hypotenuous = 12.

sin(51) = y/12

y = sin(51) * 12

y = 9.33

We have to find the missing angle we use the formula:

Tan Ф = opposite / adjacent

opposite = 12 , adjacent = 5 we get,

Ф = tan⁻¹(12/5)

Ф = 67.38°