Respuesta :
Answer:
There are 2 solutions
Step-by-step explanation:
Given the 2 equations
y = 3x + 5 → (1)
y = x² - 3x + 5 → (2)
Substitute y = x² - 3x + 5 into (1)
x² - 3x + 5 = 3x + 5 ← Subtract 3x + 5 from both sides
x² - 6x = 0 ← factor out x from each term
x(x - 6) = 0
Equate each factor to zero and solve for x
x = 0
x - 6 = 0 ⇒ x = 6
Substitute these values into (1) for corresponding values of y
x = 0 : y = 0 + 5 = 5 ⇒ (0, 5) ← is a solution
x = 6 : y = (3 × 6) + 5 = 18 + 5 = 23 ⇒ (6, 23) ← is a solution
ANSWER
One solution,
(0,5)
EXPLANATION
The given expression:
[tex]y = - 3x + 5[/tex]
and
[tex]y = {x}^{2} - 3x + 5[/tex]
We equate the two equations to get,
[tex]{x}^{2} - 3x + 5 = - 3x + 5[/tex]
This implies that,
[tex]{x}^{2} - 3x + 3x + 5 - 5 = 0[/tex]
[tex] {x}^{2} = 0[/tex]
[tex]x = 0[/tex]
We put this value of x into any of the equations to get,
[tex]y = - 3(0) + 5[/tex]
[tex]y = 5[/tex]
The system has only one solution,
(0,5).
One solution,
(0,5)
EXPLANATION
The given expression:
[tex]y = - 3x + 5[/tex]
and
[tex]y = {x}^{2} - 3x + 5[/tex]
We equate the two equations to get,
[tex]{x}^{2} - 3x + 5 = - 3x + 5[/tex]
This implies that,
[tex]{x}^{2} - 3x + 3x + 5 - 5 = 0[/tex]
[tex] {x}^{2} = 0[/tex]
[tex]x = 0[/tex]
We put this value of x into any of the equations to get,
[tex]y = - 3(0) + 5[/tex]
[tex]y = 5[/tex]
The system has only one solution,
(0,5).