Assignment: [tex]\bold{Solve \ Equation: \ \left(x-4\right)\left(x^2+6x-5\right)}[/tex]
<><><><><>
Answer: [tex]\boxed{\bold{x^3+2x^2-29x+20}}[/tex]
<><><><><>
Explanation: [tex]\downarrow\downarrow\downarrow[/tex]
<><><><><>
[ Step One ] Distribute Parenthesis
[tex]\bold{xx^2+x\cdot \:6x+x\left(-5\right)+\left(-4\right)x^2+\left(-4\right)\cdot \:6x+\left(-4\right)\left(-5\right)}[/tex]
[ Step Two ] Apply Addition / Subtraction Rules
Note: [tex]\bold{Addition \ / \ Subtraction \ Rules: \ +\left(-a\right)=-a,\:\:\left(-a\right)\left(-b\right)=ab}[/tex]
[tex]\bold{x^2x+6xx-5x-4x^2-4\cdot \:6x+4\cdot \:5}[/tex]
[ Step Three ] Simplify [tex]\bold{x^2x+6xx-5x-4x^2-4\cdot \:6x+4\cdot \:5}[/tex]
[tex]\bold{x^3+2x^2-29x+20}[/tex]
<><><><><><><>
[tex]\bold{\rightarrow Mordancy \leftarrow}[/tex]